A Chaotic Quantum Behaved Particle Swarm Optimization Algorithm for Short-term Hydrothermal Scheduling

نویسندگان

  • Chen Gonggui
  • Sun Zhi
چکیده

Abstract: This study proposes a novel chaotic quantum-behaved particle swarm optimization (CQPSO) algorithm for solving shortterm hydrothermal scheduling problem with a set of equality and inequality constraints. In the proposed method, chaotic local search technique is employed to enhance the local search capability and convergence rate of the algorithm. In addition, a novel constraint handling strategy is presented to deal with the complicated equality constrains and then ensures the feasibility and effectiveness of solution. A system including four hydro plants coupled hydraulically and three thermal plants has been tested by the proposed algorithm. The results are compared with particle swarm optimization (PSO), quantum-behaved particle swarm optimization (QPSO) and other population-based artificial intelligence algorithms considered. Comparison results reveal that the proposed method can cope with short-term hydrothermal scheduling problem and outperforms other evolutionary methods in the literature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Short-term combined economic emission hydrothermal scheduling using improved quantum-behaved particle swarm optimization

This paper presents an improved quantum-behaved particle swarm optimization (IQPSO) for short-term combined economic emission hydrothermal scheduling, which is formulated as a bi-objective problem: (i) minimizing fuel cost and (ii) minimizing emission cost. In this paper, quantum-behaved particle swarm optimization is improved employing heuristic strategies in order to handle the equality const...

متن کامل

OPTIMUM SHAPE DESIGN OF DOUBLE-LAYER GRIDS BY QUANTUM BEHAVED PARTICLE SWARM OPTIMIZATION AND NEURAL NETWORKS

In this paper, a methodology is presented for optimum shape design of double-layer grids subject to gravity and earthquake loadings. The design variables are the number of divisions in two directions, the height between two layers and the cross-sectional areas of the structural elements. The objective function is the weight of the structure and the design constraints are some limitations on str...

متن کامل

Review on the Implementation of Particle Swarm Optimization Technique in Solving the Hydrothermal Scheduling

Short term hydrothermal scheduling (STHTS) is a very complex, dynamic large-scale non-linear optimization problem. There are many algorithms and powerful optimization methods used to address this issue. Evolutionary algorithms have been effectively employed to obtain a global optimized solution of non linear problems like STHTS. Particle Swarm Optimization (PSO) is an evolutionary method. It ca...

متن کامل

Variable Head Hydrothermal Generation Scheduling Using Genetic Algorithm and Constriction Factor Based Particle Swarm Optimization Technique

In this paper, a genetic algorithm and constriction factor based particle swarm optimization technique are proposed for solving the short term variable head hydrothermal scheduling problem with transmission line losses. The performance efficiency of the proposed techniques is demonstrated on hydrothermal test system comprising of two thermal units and two hydro power plants. the simulation resu...

متن کامل

An Efficient Quantum-Behaved Particle Swarm Optimization for Multiprocessor Scheduling

Quantum-behaved particle swarm optimization (QPSO) is employed to deal with multiprocessor scheduling problem (MSP), which speeds the convergence and has few parameters to control. We combine the QPSO search technique with list scheduling to improve the solution quality in short time. At the same time, we produce the solution based on the problem-space heuristic. Several benchmark instances are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017